姓 名:王小健
性 别:男
职 称:研究员,博士
研究方向:医用生物材料;金属基功能材料;多孔材料
邮箱:xiaojian.wang@jnu.edu.cn
职称及职务:研究员
个人简介:
2009年初博士毕业于澳大利亚Deakin University,先后在澳大利亚联邦科学与工业组织(CSIRO)、Swinburne University of Technology从事研究工作6年。主要从事金属基多孔材料用于骨修复及新型金属基功能材料的研究。2015初应聘回国从事科研工作。在国外先后主持并完成了澳大利亚ARC、CSIRO及斯文本科技大学等资助的科研项目。任澳大利亚纳米技术协会会员,澳大利亚生物材料学会会员。曾担任澳大利亚National Health and Medical Research Council (NHMRC)项目评审专家。国际期刊审稿人:ActaBiomaterialia,JMaterialsChemistryC,RSCAdvance, Surface and Coating Technology.共发表SCI期刊论文20余篇,主要包括Acta Biomater, ACS Appl Mater& Interface, Tissue Eng,等。论文共被SCI引用780余次,h指数12。
科技成果:
1.项目主持,金属基纳米孔道高性能锂空气电极材料研究;项目来源: Swinburne University of Technology种子基金; 项目经费:AUD 10,000, 2013-2014,已完成。
2.项目主要参与人员,高性能多尺度纳米金属材料开发,DP110101974,项目来源:澳大利亚国家研究基金,Australian Research Council, ARC”;项目经费:AUD210,000,2011-2014,已完成。
3.项目主要参与人员,无机多孔生物材料开发,项目来源:澳大利亚联邦科学与工业组织;项目经费:AUD 300,000,2009-2012,已完成。
4.项目主要参与人员,钛基多孔生物材料开发;项目来源:澳大利亚国家研究基金,Australian Research Council, AR;C项目经费:AUD330,000,2007-2010,已完成。
代表性论文:
1. MA Rahman, X Wang, C Wen, Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes, Journal of Energy Chemistry, 2015, 24 (2), 157-170
2. X.J. Wang and C.E. Wen, Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium, Appl. Surf. Sci. 2014, 303, 196-204.
3. M.A. Rahman, X.J. Wang, C.E. Wen, A review of high energy density lithium-air battery technology, J. Appl. Electrochem., 2014, 44, 5-22. .
4. X.J. Wang, D.H. Chen, L. Cao, Y.C. Li, B.J. Boyd, R.A. Caruso, Mesoporous titanium zirconium oxide nanospheres with potential for drug delivery applications, ACS Appl. Mater. Interfaces, 2013, 5, 10926-10932,
5. M.A. Rahman, X.J. Wang, C.E. Wen, High Energy Density Metal-Air Batteries: A Review, J. Electrochem. Soc., 2013, 160, 10, A1759-A1771.
6. W.A. McMaster, X.J. Wang, R.A. Caruso, Collagen-Templated Bioactive Titanium Dioxide Porous Networks for Drug Delivery, ACS Appl. Mater. Interfaces, 2012, 4, 4717–4725.
7. J.Y. Xiong, X.J. Wang, Y.C. Li, P.D. Hodgson, Interfacial chemistry and adhesion between titanium dioxide nanotube Layers and titanium substrates, J. Phys. Chem. C, 2011, 115, 4768–4772.
8. X.J. Wang, Y.C. Li, P.D. Hodgson, C.E. Wen, Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering, Tissue Eng. Part A. 2010, 16, 309-316.
9. X.J. Wang, Y.C. Li, J.Y. Xiong, P.D. Hodgson, C.E. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomater. 2009, 5, 3616-3624.
10. X.J. Wang, Y.C. Li, J.G. Lin, P.D. Hodgson, C.E. Wen, In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies, Acta Biomater. 2008, 4, 1530-1535.
11. J.Y. Xiong, Y.C. Li, X.J. Wang, P.D. Hodgson, C.E. Wen, Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications, Acta Biomater. 2008, 4,1963-1968.
12. X.J. Wang, Y.C. Li, J.G. Lin, P.D. Hodgson C.E. Wen, Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy, J. Mater. Res. 2008, 23, 1682-1688.
13. X.J. Wang, Y.C. Li, J.G. Lin, P.D. Hodgson C.E. Wen, Effect of heat-treatment atmosphere on the bond strength of apatite layer on Ti substrate, Dent. Mater. 2008, 24, 1549-1555.
14. J.Y. Xiong, Y.C. Li, X.J. Wang, P.D. Hodgson, C.E. Wen, Titanium-nickel shape memory alloy foams for bone tissue engineering, J. Mech. Behav. Biomed. 2008, 1, 269-273.
15. H.S. Wang, X.L. Qiao, J.G. Chen, X.J. Wang, S.Y. Ding, Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys. 2005, 94, 449-453.